Code: 9F00205

MCA II Semester Supplementary Examinations, March 2013

OPERATIONS RESEARCH

Time: 3 hours Max Marks: 60

Answer any FIVE questions
All questions carry equal marks

- 1 Explain various models available in operations research. What are the limitations of operation research?
- 2 Solve the following linear programming problem using the result of its dual problem

Minimize
$$Z_1 = 24 X_1 + 30 X_2$$

Subject to $2X_1 + 3X_2 \ge 10$
 $4X_1 + 9X_2 \ge 15$
 $6X_1 + 6 X_2 \ge 20$
 $X_1 \ and \ X_2 \ge 0$.

The following matrix shows the processing time in days. Solve this assignment problem using Hungarian method

			Project			
		Α	В	С	D	Е
	1	20	30	25	15	35
Man	2	25	10	40	12	28
power	3	15	18	22	32	24
	4	29	08	34	10	40
	5	35	23	17	26	45

Droiget

Six jobs are to be proceeded at three machines A, B and C in the order ABC. The time taken by each job on each machine is indicated below. Each machine can process only one job at a time.

Jobs										
Machines	J1	J2	J3	J4	J5	J6				
Α	15	11	10	14	13	08				
В	10	13	12	09	13	07				
C	06	07	05	08	4.5	07				

Contd. in Page 2

Code: 9F00205

- What is dynamic programming? Explain the characteristics of dynamic programming.
- With an example, explain the procedure involved for replacement of items that fail suddenly.
- 7 The pay off matrix with respect to player A is shown below. Solve it optimally:

8 The details of a product to be manufactured in a company are as follows: $r = 40,000 \text{ units/year}, k = 80,000 \text{ units/year}, C_0 = \text{Rs } 300 \text{ per set - up}, C_C = \text{Rs } 30/\text{units/ year}, find the EOQ and cycle time.}$
